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Abstract-&i exact aualyticat solution of the energy equation is given for the laminar, steady state 
Couette flow of an incompressible viscous fluid between paralfel plates. ~e~ophysi~l properties of 
the fluid are assumed to be temperature independent. Four cases of boundary conditions are considered. 
These include unit temperature steps at one or both plates or a unit temperature step at one plate, the 
other plate being completely insulated. The spatial development of the temperature profiles is set forth 
graphically. Variation of the local Nusselt number with longitudinal distance and limiting values for the 

region of full thermal stabilization are reported. 

NOMENCLAm T,, temperature of the fluid at z = 0; 
thermal diffusivity of the fluid ; T,, temperature at the wall; 
constant defined in equation (27); &* “cup-mixing” or bulk temperature ; 
constant defined in equation (22) ; u point velocity in the z-direction ; 
specific heat at constant pressure ; 6: velocity of the moving plate ; 
constant defined in equation (29) ; YY distance perpendicular to the plates ; 
constant defined in equation (30); z, distance along the wall. 
constant defined in equation (35); 
function of the q variable, equation Greek symbols 

(21); a n, eigenvalues of the b.v. problems 
constant defmed in equation (36); considered ; 
function of the 4 variable, equation r, gamma function ; 

(21); 5, dimensionless longitudinal distance; 
constant defined in equation (39); tt, dimensionless transverse distance; 
heat-transfer coefficient ; 9, dimensionless temperature ; 
distance between the plates ; %I, d~ensionle~ temperature at the 
Bessel function of the frrst kind, vth wall ; 
order ; 9 ’ b, dimensionless bulk temperature ; 
thermal conductivity ; P1 density of the fluid. 
local Nusselt number ; 
local Nusselt number at the station- INTRODUCTION 

ary plate ; HEAT or mass transport which frequently occurs 
local Nusselt number at the moving in fluid flow systems involving moving bound- 
plate ; aries plays a significant role in many industrial 
limiting value of the Nusselt number ; applications. The complexity of the mathe- 
P&let number ; matical solution of the problem depends up to 
temperature ; a great extent upon the character of the fluid 
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velocity field in the particular geometry under channel with a ~iform temperature, both walls 
consideration. were held at an equal temperature, different 

Beek and Bakker [l, 21 calculated mass- from that of the entering fluid. In addition, 
transfer coefficients for Newtonian fluid flow imposed to the simple Couette flow, a constant 
with a plane moving interface along which a pressure gradient along the duct was assumed 
boundary layer develops. Their paper [l] also to exist. In their paper, the first five eigenvalues 
includes a solution for the semi-infinite Couette and eigenfunctions of the corresponding Sturm- 
flow bounded by a moving plate across which Liouville problem were found by numerical 
mass transfer takes place. Couette flow in integration. If there is no pressure gradient 
confined geometries, e.g. between parallel plates, acting along the duct however, the convective 
Fig. 1 has been adopted as a model of the flow transport of the fluid is due entirely to the 
and heat-tr~sfer behaviour of lubri~ts in motion of the belt and the solution of the 
journal bearings. Vogelpohl [3] calculated corresponding boundary value problem is ob- 
the temperature distribution due to irrever- tained in a closed form. 
sible mechanical energy dissipation in bearings It is the purpose of this paper to derive 
assuming a constant temperature at both walls expressions for the temperature distributions 
of the gap. In a subsequent paper [4] the same and Nusselt numbers corresponding to physical 
problem has been solved for the case where models characterized by boundary conditions 
both walls were completely insulated. Hudson which are different from that treated in the 
[S] and later on Hudson and Bankoff [6] previous investigations. These may also be 
calculated the temperature distribution in a more realistic in some other industrial applica- 
narrow passage formed by an endless belt in tions of the Couette flow model accompanied 
uniform translatory motion parallel to a station- with heat or mass transfer. 
ary wall. The fluid was assumed to enter the 

THJZ STATEMENT OF THE PROBLEM 
A parallel plate channel is formed by a 

stationary lower wall and a uniformly moving 
upper plate which may either be an endless 
belt or a fictitious plane normal to the blade 
of a rotational, thin-film heat exchanger, see 
Fig, 1. Assuming temperature independent 

(A) 
thermophysical properties of the transported 

I \ - fluid, the upper plate induces a uniform velocity 

r=r,, z>o 
gradient in the channel. This requires the shear 

i,-!L_ stress to remain at a constant value across the 
duct which in turn means that, the correspond- 
ing linear velocity distribution will hold for 
the case of simple non-Newtonian models of 
rheological behaviour as well as for the New- 

(61 
-b-W 

(01 
-..-“--I tonian linear relation between the stress and 

rate-of-deformation tensors. Therefore, the 
velocity distribution in the channel is 

FIG. I. Location of the coordinate system and boundary 
conditions. 

U 
u, = -. y. 

H 
(1) 
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Neglecting the term representing longitudinal 
molecular transport of heat, viscous dissipation 
as well as other heat generation or depletion 
terms, the steady-state form of the energy 
equation in Cartesian coordinates becomes, [7] : 

p&g = kE 
ay2. (2) 

Substituting from equation (1) for the velocity 
component u, into the energy equation (2) 
along with the definition of the thermal dif- 
fusivity a = k/(p . c,), there is 

UBT a2T 
Y.z-jg=a-p. (3) 

Four cases of boundary conditions had been 
considered; the arrangement of the correspond- 
ing physical models is shown schematically in 
Figs. l(A-C). At the entrance of the channel, 
the fluid has a uniform temperature: 

T= T,, O<y<H, z < 0. (4) 

This boundary condition is common for all the 
four cases considered in this paper, The remaining 
boundary conditions may be summarized as 
follows : 

Case A (Fig. la). Both plates of the channel 
maintained at a constant temperature Tl. 

T=T,; y=O 
T=T,; y=H 

z > 0. (5) 

Equation (3) along with the boundary condition 
in equations (45) is obtained as a particular 
case of the boundary value problem in [6] for a 
zero pressure gradient. 

Case B (Fig. lb). Stationary plate maintained 
at a constant temperature Tl different from that 
of the entering fluid. 

T=T,: y=O z>. 
T= To; y=H (6) 

Case C (Fig. 1~). Zero heat flux at the upper 
moving plate. This may be a consequence of a 
thermal insulation or negligible value of the 
coefficient of heat transfer into the adjacent 
medium. 

T=T,; y=O 
aTjay = 0; y = H " O* (7) 

Case D (Fig. Id). Zero heat flux at the stationary 
plate. 

aTlay = 0; y = 0 
T=T,; y=H 

z, o 
’ (8) 

The local heat-transfer coefficient expressed 
in terms of the dimensionless Nusselt number is 

Nu = hH/k = 
-HaTlaYl, 

T _ T (9) 
w b 

where the bulk or cup-mixing temperature Tb 
is defined as 

ANALYSIS 

Introducing the following dimensionless vari- 
ables and the Pkclet group 

,g= G-T 
T,-; v = Y/H 

+z; 
H.Pe 

pe = UH 
a * 

Equations (3-10) reduce to 

as a29 
t1,5=p 

9= 1; O,<rl<I; 5 < 0. 

Case A 

31;; ;I; <>O. 
9 I 

Case B 

Case C 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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CaseD 

Separating the variables on assuming the solu- 
tion of the form 

8 = ~~~~(~~ (201 

Equation (12) becomes 

ldg_ 9 z___ 1 d2f 

sd< 4 tlf dq2 
(21) 

where -9cr2/4 is the separation constant. The 
solution of the resulting ordinary differential 
equations is straightforward and one obtains for 
the general solution : 

*%% 8 = ~~~~ 2 L4J*l%@~ 

+ RJ- &tfQ~I exl3 e-%31* GQl 

CaseA 
From equation (14) 8(0,{) = 0, wherefrom 

B, = 0 and equation (22) reduces to 

9(qj 5) = J(S) $0 AJ,(E~~*) ex~ ( -$gr). (23) 

The boundary condition at the moving plate 
@I,() = 0 yieIds 

This requires the eigenvalues cr, to be positive 
roots of J+(a) = 0. Since it is not difficult to 
prove using equations (14) and (21) that the 
eigenfunction corresponding to the first eigen- 
value c(,, = 0 vanishes, the general solution of the 
Case A is 

The constants A, are found from the boundary 

conditions at the duct entrance, equation (13) : 

T = n$ 1 4~~@w+h WI 

Multiplying equation (26) by @J+(cr,) dq, inte- 
grating from 0 to 1 and making use of the ortho- 
gonal property of the eigenfunctions gives for 
the A,,: 

and makes thus the expression for the tempera- 
ture distribution complete. Calculation of the 
temperature profiles has been programmed and 
performed on the IBM 7094 digital computer of 
the University of Toronto. Eigenvalues for this 
and all the following boundary value problems 
were taken from [g]. Figure 2 shows some 
temperature profiles for the s~et~~ly heated 
channel. It has been mentioned earlier, that this 
situation is equivalent to the boundary value 
problem treated in f6] for the special case of a 
negligible pressure gradient. Unfortunately, a 
rigorous comparison of the numerical results 
was not possible since the constants A,, are 
missing in the material tabulated in [6]” A 
qualitative check against some temperature 
profiles presented in [6] in graphical form 
brought out satisfactory agreement. 

In order to calculate the local Nusselt groups, 
the bulk temperature is obtained on inserting 
the expression for Z& ~$1 corn equation (25) into 
(19) and ~tegrat~g from 0 to 1. The dimension- 
less heat flux, having different values at both 
plates, yields different values of the Nusselt 
numbers Performing all the calculations out- 
lined earlier gives for the Nusselt number Nu,,, 
at the moving plate : 

Jl G exp t -44%) 

Nu,, = -@V/3) m (2@ 
C 13, exp f -X8 

#?=I 
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Moving plate, 

,6 - 

8 ‘Stationary plate 

FIG. 2. Dimensionless temperature profiles, boundary 
condition, Case A. 

where 

(29) 

The Nusselt group Nu,, characterizing the heat 
transfer at the stationary plate is obtained in a 
similar way : 

C,, and D,, having the same meaning as in equa- 
tion (28). The variation of Nu,~ and NusP with 
the dimensionless longitudinal distance 5 is 
shown in Fig. 3. Since the heat fluxes at both 
plates are opposing each other, the Nusselt 
group definition in equation (18) results in 
negative values of Nu, In order to calculate the 
total Nusselt number (iVu,l + 1 Nu,!,I which is 
a measure of the total heat quantity entering 
the fluid across the solid interfaces, both Nusselt 
groups are plotted positive in Fig. 3. 
CaseB 

As far as the calculation of the temperature 
profiles for these and all the remaining boundary 
conditions is essentially the same as in case A, no 
details of the procedure will be given in the 
following text. The expression for the tempera- 
ture distribution has the form: 

“=‘x exp (- %I&<). (32) 
The eigenvalues a” are again positive roots of 
J+(a) = 0. Figure 4 shows tem~rature profiles 
for some values ofthe dimensionless longitudinal 
distance r, Fig 5 presents the variation of the 
Nusselt numbers with c. The Nusselt number at 
the moving plate is 

Wwp = 

3 + 9 mzl J% exp ( - $ai%) 

1 - 2ez, kexp(-Z&X) 
(33) 

whereas at the stationary plate, 

3 + 9 2 E,, exp (- $a,2l) 
Nu, = ?I=1 

2 +2 f F,exp(-$a,2<) 
(34) 

II=1 

The constants E, and F, in equations (33-34) are 

E, = l/Cr(l/3)(a,/2))5-*(an)l (35) 

and 
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al Nusselt number 

i 
““O.OW1 

i I I I I I IIllll I I >“‘i 

0,001 0.01 0 

E 
FIG. 3. Variation of the local Nusselt number with longi- 

tudinal distance, boundary condition Case A. 

In Case A, zero heat fluxes at both plates are where 
approached with increasing values of 5. Thermal G” = l~~~~~(~~l* 
~ui~b~~ in Case B is characterized by 
dimensionless heat fluxes having the same 
direction and unit magnitude. Consequently, a 
steady heat flow and linear temperature distri- 
bution across the channel is approached far 
from the entrance to the channel. 

Case C 
The expression for the temperature profile is : 

Tbe eigenvalues a, are positive roots of J-+(a) 
= 0, tabulated, e.g. in [S J. Figure 6 shows some of 
the dimensionless temperature profiles, 

The Nusselt number at the stationarv ulate is : 

(391 

The graphical form of equation (38) is shown in 
Fig. 7. Since there is no heat transfer at the moving 
pfate, Nu__~ = 0. 

Case D 

The temperature distribution is found to be : 

x exp (- $c&). (W 

The eigenvalues a, are positive roots of J-, 
(a) = O> [8]. The temperature profiles are shown 
in Fig. 8. 

The Nusselt number at the upper moving 
plate is : 

g nzl ew C-+2<> 

mnp = jj op 

m& ~2exp~-$%%~~ (41) 

This relation is plotted in Fig. 9. 
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Stabilized 
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FIG. 4. Dimension&s temperature profiles, boundary FIG. 6. Dimensionless temperature profiles, boundary 
condition Case B . condition Case C. 

FIG. 5, Variation of the local Nusselt number with Ion& 
tudinat distance, boundary condition Case B. 
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100.0 

/ 

I.0 I I1/1,11 I I //II 
0cco1 0.001 0.01 0.1 

E 
FIG. 7. Local Nusselt number at the stationary plate vs. 5, 

/oving plats boundary condition Case C. 

0 0.2 0.4 ‘x.,0.6 0.6 

8 
‘Stationary &ate 

FIG. 8. Dimensionless temperature profiies, boundary . . . - - 

LIMITING VALUES OF THE NUSSELT NUMBER 

One of the characteristic features of laminar 
forced convection heat transfer in ducts of 
constant cross section is, that, as fulIy developed 
velocity and tem~rature profiles are ap- 
proached, the Nusselt number converges to a 
constant value. These limiting values are found 
from the expressions defining the Nusselt 
numbers for very large values of the { variable ; 
e.g. for boundary condition, Case C the limiting 
value of the Nusselt group at the lower stationary 
plate is obtained from equation (38) as : 

Nu, (l -+ sm) = 8 a:. (42) 

Recalling that the first positive root ofi_+ = 0 
is CI~ = 1.243 there is 

Nu,, (w) = 1.738. (43) 

Limiting values for other boundary condition 
cases are listed in Table 1. 

Table 1. Limiting values of the Nusselt number 
__~_ -.--_-~ 

Boundary condition A 
Case 

B C D 

Limiting 
Nusselt Nump 5.852 3-000 0 3,946 
number N%&. 3626 1~5Ou 1,738 0 

conditton Case U. _-.~ -- 
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l.o: OCOOI 0001 001 ( 

E 
FIG. 9. Local Nusselt number at the moving plate vs. <, 

boundary condition Case D. 

CONCLUSION making available to him the necessary machine time on 

Exact analytical solutions of the energy equa- the IBM 7094 computer. 
tion in terms of temperature profiles and Nusselt 
numbers have been obtained for the pure 
Couette flow and heat transfer between parallel 
plates. An inspection of the temperature profile 
developments shown graphically reveals the 1. 
fact that increasing convection at the vicinity of 2. 
the moving plate results in intensified energy 
transport thereon. Similarly the heat-transfer 
rate, expressed in terms of the dimensionless 

3. 

Nusselt group, exhibit higher values at the 
moving plate. These conclusions are true for all 4. 
the cases considered. Solutions obtained in this 
paper may serve as a reliable reference to check s. 
techniques developed for the treatment of more 
complicated problems associated with Couette 6 

’ flow of Newtonian as well as non-Newtonian 
fluids between parallel plates or narrow-gap 7, 
coaxial cylinders. 
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R&m&--On donne une solution analytique exact de l’equation de l’energie pour f’ecoulement de Couette 
laminaire en regime permanent d’un fluide visqueux incomp~ssible entre des nlaoues oarall&les. Les 
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proprietes thermiques du fluide sont suppostes independantes de la temperature. On considere quatre 
cas de conditions aux limites. Celles-ci consistent en des echelons unitaires de temperature sur l’une des 
plaques ou sur les deux ou un khelon unitaire de temperature sur une plaque, l’autre plaque &ant com- 
pletement isolee. Le dtveloppement special des profils de temperature est expose graphiquement. La 
variation du nombre de Nusselt local avec la distance longitudinale est present&e ainsi que les valeurs 

limites pour la region de la stabilisation thermique complete. 

Zusammenhssang-Fur die laminare, stationare Couette-Stromung einer inkompressiblen, viskosen 
Fliissrgkeit zwischen parallelen Platten wird die exakte analytische Liisung der Energiegleichung angegeben. 

Die thermophysikalischen Eigenschaften der Fltissigkeit werden als temperaturunabhtigig angenom- 
men. Es werden 4 Falle von Randbedingungen betrachtet. Diese umfassen schrittweise Temperaturerer- 
hiihungen an einer oder an geiden Platten, bzw. schrittweise Temperaturerhiihung an einer Platte, wahrend 
die andere vollstiindig isoliert ist. Die Temperaturprotile werden auf graphischem Wege ermittelt. Die 
binderung der ijrtlichen Nusselt-Zahl in Ltigsrichtung und die Grenzwerte fiir das Gebiet der thermisch voll 

ausgebildeten Strijmung werden angegeben. 

AHHOT~~HJI-II~HBOJJSSTCHTO'IHO~ aHamTmecKoepememe ypaBHeHtr~3HeprmiA;m ycTaeo- 

BIIBLLIeI'OCH JIaMHHapHOI'O TeYeHAll H'y3TTa HeC?KMMaeMOP BR3HOti WIAHOCTU Memny IIapaJI- 

JleJIbHbIMIl IlJlaCTRHaMH B ~OIIyUeHIW He3aBACHMOCTB TeIIJIO@M3WIeCKHX CBOi?CTB HiH,l(KOCTki 

OT TeMIIepaTypbI. PaCCMaTpMBaIOTCH qeTbIpe TIllIa rpaHHYHbIX yCJIOBE&: O~IIHOqHti TeMIIe- 

paTypHbIi'k HMIlyJIbC Ha OHHOt HJIW 06elfX IIJlaCTkiHaX IlJlH HMllyJlbC TeMnepaTypbI Ha OnHO 

n~aCTHHe,BTOBpeMRKaKBTOpaRIIjIaCTIlHanOJIHOCTblOTe~~O~3OJI~pOBaHa. TemnepaTypnbre 
npo@unu npencTa3nerrr.t rpa@rsecua. IIoua3auo u3Merrenne nonanbrrbrx nenrrunrr Kpnrepnn 
HyCCenbTaB3aBIlCllMOIlTIlOTnpOAOnbHOrOpaCCTO~Hll~anpeAenbHbIX3HaseHIltAnR. o6nacTa 

IIOJlHOt TepMU~eCKOlt CTa6HJlki3aqHIL 


