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Abstract—An exact analytical solution of the energy equation is given for the laminar, steady state

Couette flow of an incompressible viscous fluid between parallel plates. Thermophysical properties of

the fluid are assumed to be temperature independent. Four cases of boundary conditions are considered.

These include unit temperature steps at one or both plates or a unit temperature step at one plate, the

other plate being completely insulated. The spacial development of the temperature profiles is set forth

graphically. Variation of the local Nusselt number with longitudinal distance and limiting values for the
region of full thermal stabilization are reported.

NOMENCLATURE T, temperature of the fluid at z = 0;

a, thermal diffusivity of the fluid; Ty, temperature at the wall;
A, constant defined in equation (27); Tis “cup-mixing” or bulk temperature;
B, constant defined in equation (22); U, point velocity in the z-direction;
Cps specific heat at constant pressure; U, velocity of the moving plate;
C, constant defined in equation (29); Vs distance perpendicular to the plates;
D,, constant defined in equation (30); z, distance along the wall.
E,, constant defined in equation (35);
£ function of the n variable, equation Greek symbols

(21); Ol eigenvalues of the b.v. problems
Fp, constant defined in equation (36); considered;
g, function of the £ variable, equation r, gamma function;

(21); ¢, dimensionless longitudinal distance;
G,, constant defined in equation (39); ", dimensionless transverse distance;
h, heat-transfer coefficient; 3, dimensionless temperature ;
H, distance between the plates; 3., dimensionless temperature at the
T Bessel function of the first kind, vth wall;

order; 3, dimensionless bulk temperature ;
k, thermal conductivity; P, density of the fluid.
Nu(%), local Nusselt number;
Nug, local Nusselt number at the station- INTRODUCTION

ary plate; HEAT or mass transport which frequently occurs
Nu,,,  local Nusselt number at the moving in fluid flow systems involving moving bound-

plate; aries plays a significant role in many industrial
Nu(co), limiting value of the Nusselt number; applications. The complexity of the mathe-
Pe, Péclet number; matical solution of the problem depends up to
T, temperature; a great extent upon the character of the fluid

T
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velocity field in the particular geometry under
consideration.

Beek and Bakker [1, 2] calculated mass-
transfer coefficients for Newtonian fluid flow
with a plane moving interface along which a
boundary layer develops. Their paper [1] also
includes a solution for the semi-infinite Couette
flow bounded by a moving plate across which
mass transfer takes place. Couette flow in
confined geometries, e.g. between parallel plates,
Fig. 1 has been adopted as a model of the flow
and heat-transfer behaviour of lubricants in
journal bearings. Vogelpohl [3] calculated
the temperature distribution due to irrever-
sible mechanical energy dissipation in bearings
assuming a constant temperature at both walls
of the gap. In a subsequent paper [4] the same
problem has been solved for the case where
both walls were completely insulated. Hudson
[5] and later on Hudson and Bankoff [6]
calculated the temperature distribution in a
parrow passage formed by an endless belt in
uniform translatory motion parallel to a station-
ary wall. The fluid was assumed to enter the
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F16. 1. Location of the coordinate system and boundary
conditions.

channel with a uniform temperature, both walls
were held at an equal temperature, different
from that of the entering fluid. In addition,
imposed to the simple Couette flow, a constant
pressure gradient along the duct was assumed
to exist. In their paper, the first five eigenvalues
and eigenfunctions of the corresponding Sturm-
Liouville problem were found by numerical
integration. If there is no pressure gradient
acting along the duct however, the convective
transport of the fluid is due entirely to the
motion of the belt and the solution of the
corresponding boundary value problem is ob-
tained in a closed form.

It is the purpose of this paper to derive
expressions for the temperature distributions
and Nusselt numbers corresponding to physical
models characterized by boundary conditions
which are different from that treated in the
previous investigations. These may also be
more realistic in some other industrial applica-
tions of the Couette flow model accompanied
with heat or mass transfer.

THE STATEMENT OF THE PROBLEM

A parallel plate channel is formed by a
stationary lower wall and a uniformly moving
upper plate which may either be an endless
belt or a fictitious plane normal to the blade
of a rotational, thin-film heat exchanger, see
Fig. 1. Assuming temperature independent
thermophysical properties of the transported
fluid, the upper plate induces a uniform velocity
gradient in the channel. This requires the shear
stress to remain at a constant value across the
duct which in turn means that, the correspond-
ing linear velocity distribution will hold for
the case of simple non-Newtonian models of
rheological behaviour as well as for the New-
tonian linear relation between the stress and

rate-of-deformation tensors. Therefore, the
velocity distribution in the channel is
U
U, =—.J 1
77 (1)
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Neglecting the term representing longitudinal
molecular transport of heat, viscous dissipation
as well as other heat generation or depletion
terms, the steady-state form of the energy
equation in Cartesian coordinates becomes, [7]:
or o*T

pCl, e k PR )

Substituting from equation (1) for the velocity

component u, into the energy equation (2)

along with the definition of the thermal dif-
fusivity a = k/(p . c,), there is

UdoT o*T

= =a—7. 3

V"~ ¢ oy? 3

Four cases of boundary conditions had been
considered ; the arrangement of the correspond-
ing physical models is shown schematically in
Figs. 1(A—C). At the entrance of the channel,
the fluid has a uniform temperature:

T=T O0<y<H :z<50 4)

This boundary condition is common for all the
four cases considered in this paper, The remaining
boundary conditions may be summarized as
follows:

Case A (Fig. la). Both plates of the channel
maintained at a constant temperature T;.

T=T;
T= Tl;

- > >0
Equation (3) along with the boundary condition
in equations (4-5) is obtained as a particular
case of the boundary value problem in [6] for a
zero pressure gradient.

Case B (Fig. 1b). Stationary plate maintained
at a constant temperature T, different from that
of the entering fluid.

T=T: y=0
T=T; y=H

Case C (Fig. 1c). Zero heat flux at the upper
moving plate: This may be a consequence of a
thermal insulation or negligible value of the
coefficient of heat transfer into the adjacent
medium.

z>0 (6)

T=T; y=0

0T/joy=0; y=H

Case D (Fig. 1d). Zero heat flux at the stationary
plate.

z> 0. 0

oT/dy = 0;
T= Tl’

The local heat-transfer coefficient expressed
in terms of the dimensionless Nusselt number is
—HoT)oy|,,

Tw - 7;)

where the bulk or cup-mixing temperature T,
is defined as

y=0

S_H >0 @®)

Nu = hH/k = ©)

H H 5 H
T, = Su,Tdy/ju,dy = ﬁ—ZSTydy. (10

[} 0

ANALYSIS
Introducing the following dimensionless vari-
ables and the Péclet group

Tl-

-9=——T1_T0; = y/H
z UH (1)
‘=mre Tt
Equations (3-10) reduce to
o9 9%9
'155=517 (12)
3=1; 0<n<1l; ¢<0 (13
Case A
D =0; =0
9o Z=1 5>0.} (14)
Case B
3=0; =0
S 1. po1 f>0.} (15)
Case C
68/6n = 0, Z=1 ¢>0.} (16)
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Case D

08/p=0; n=0
$=0 n=1 £>O,} (17)

_ —0o%/on|,,
NM—W (18)

T, — T, \

S Sl ‘
Sb_Tl_'TO 2&9:1(11}. (19)

Separating the variables on assuming the solu-
tion of the form

3 = flng(S) (20)
Equation (12) becomes
ldg 9, 1 d*f
gic - ~a% “prap O

where —9a?/4 is the separation constant. The
solution of the resulting ordinary differential
equations is straightforward and one obtains for
the general solution:

80,8) = /i) . [Aud 4(0r?)
+ B J_fenH]exp(—328. (22

Case A
From equation (14) 3(0, ) = 0, wherefrom
B, = 0 and equation (22) reduces to

31,5 = (1) 3, A (o) exp (=320, (23

The boundary condition at the moving plate
8(1, &) = O yields

=T

Y AJ(w)exp(—3038 =0

=0

(24)

This requires the eigenvalues «, to be positive
roots of Jy(x) = 0. Since it is not difficult to
prove using equations (14) and (21) that the
eigenfunction corresponding to the first eigen-
value &, = 0 vanishes, the general solution of the
Case A is

808 = ) 3. A () exp(— 3628, (25)
n=1

The constants 4, are found from the boundary

conditions at the duct entrance, equation (13):
T= Zl AT o). (26)

Multiplying equation (26) by n%J,(«,,) dy, inte-
grating from 0 to 1 and making use of the ortho-
gonal property of the eigenfunctions gives for
the 4,:
1
j(; "*Js&(an"*) dy
Ay =
[ 3 dn

_ [/ *resy - o) — 1]
(06a/2) _3(x)

and makes thus the expression for the tempera-
ture distribution complete. Calculation of the
temperature profiles has been programmed and
performed on the IBM 7094 digital computer of
the University of Toronto. Eigenvalues for this
and all the following boundary value problems
were taken from [8] Figure 2 shows some
temperature profilesfor the symmetrically heated
channel. It has been mentioned earlier, that this
situation is equivalent to the boundary value
problem treated in [6] for the special case of a
negligible pressure gradient. Unfortunately, a
rigorous comparison of the numerical results
was not possible since the constants A, are
missing in the material tabulated in [6]. A
qualitative check against some temperature
profiles presented in [6] in graphical form
brought out satisfactory agreement.

In order to calculate the local Nusselt groups,
the bulk temperature is obtained on inserting
the expression for 3y, £) from equation (25) into
(19} and integrating from 0 to 1. The dimension-
jess heat flux, having different values at both
plates, yields different values of the Nusselt
number- Performing all the calculations out-
lined earlier gives for the Nusselt number Nu,,,
at the moving plate:

@7

Y C,exp(—$028)
n=1
Nty = —31(1/3)
5. Dyexp(~$020)

(28)
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FiGg. 2. Dimensionless temperature profiles, boundary
condition, Case A.

where
Co =1 — (/2T (2/3)] _ (=)
D = Ca[1 — I'(1/3)0n/2)2 _ ()]
" (0/2)* T _ 4(0t) ’

The Nusselt group Nu,, characterizing the heat
transfer at the stationary plate is obtained in a
similar way:

(29

(30)

w C" .
E mexp(-—?mf)
n=1

Nu, = =
X, Duexp(=30)

P

W

GD

C, and D, having the same meaning as in equa-
tion (28). The variation of Nu,, and Nu,, with
the dimensionless longitudinal distance ¢ is
shown in Fig. 3. Since the heat fluxes at both
plates are opposing each other, the Nusselt
group definition in equation (18) results in
negative values of Nu,. In order to calculate the
total Nusselt number | Nu,,| + | Nu,,| which is
a measure of the total heat quantity entering
the fluid across the solid interfaces, both Nusselt
groups are plotted positive in Fig. 3.
Case B

As far as the calculation of the temperature
profiles for these and all the remaining boundary
conditions is essentiaily the same as in case A, no
details of the procedure will be given in the
following text. The expression for the tempera-
ture distribution has the form:

o) J (o)
(s L (/232 ()

x exp(—3038).  (32)
The eigenvalues w, are again positive roots of
J (@) = 0. Figure 4 shows temperature profiles
for some values of the dimensionless longitudinal
distance &, Fig. 5 presents the variation of the
Nusselt numbers with . The Nusselt number at
the moving plate is

349 ; E, exp (—302&)

S, &y =n -+

N u"'P = © (33)
1-2 ) F,exp(—$02¢)
n=1
whereas at the stationary plate,
3+9 Y E,exp(—302d)
Nu,, = =l (34)

242 F,exp (= 3028
n=1

The constants E, and F, in equations (33-34) are

E, = Y[T(1/3), /2% _3(@)]  (35)

and

_ 1= (@21 (1/3)J ()
T T(13)0/2) R yfa)

F, (36)
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F1G. 3. Variation of the local Nusselt number with longi-
tudinal distance, boundary condition Case A.

In Case A, zero heat fluxes at both plates are
approached with increasing values of ¢. Thermal
equilibrium in Case B is characterized by
dimensionless heat fluxes having the same
direction and unit magnitude. Consequently, a
steady heat flow and linear temperature distri-
bution across the channel is approached far
from the entrance to the channel.

Case C
The expression for the temperature profile is:
kesd

3,8 = YO Z @/o)?
n=1

I'(1/3)
Iyl 9,2
X iy e (—4d)
The eigenvalues a, are positive roots of J_ 4{a)
= 0, tabulated, e.g. in [8]. Figure 6 shows some of

the dimensionless temperature profiles.
The Nusselt number at the stationarv olate is:

N f G,exp(—303¢)
Nu,, = - "1 -
5 3 (Guad)exp (—3220)

(37

(38)

where
G,=1 /[oc,?Ji(a,)]. 3%

The graphical form of equation (38} is shown in
Fig.7.Since there isno heat transfer at the moving
plate, Nu,, = 0.

Case D

The temperature distribution is found to be:

= 3
51,9 = 2¢(n>z T-4(0t)
n=1
(40)

Qtn’j §(an)
x exp (—Z038).
The eigenvalues a, are positive roots of J_,
(«) = 0, [8]. The temperature profiles are shown
in Fig. 8.
The Nusselt number at the upper moving
plate is:

5 3 ep(~a20
Nu,,,p == *g P .
.3;.1 oy 2 exp (— 39428)

This relation is plotted in Fig. 9.

(41)
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LIMITING VALUES OF THE NUSSELT NUMBER

One of the characteristic features of laminar
forced convection heat transfer in ducts of
constant cross section is, that, as fully developed
velocity and temperature profiles are ap-
proached, the Nusselt number converges to a
constant value. These limiting values are found
from the expressions defining the Nusselt
numbers for very large values of the £ variable;
e.g. for boundary condition, Case C the limiting
value of the Nusselt group at the lower stationary
plate is obtained from equation (38) as:

(42)

Recalling that the first positive root of J _ () = 0
is oy = 1-243 there is

Nu,, () = 1-738. 43)

Limiting values for other boundary condition
cases are listed in Table 1.

Nug, (£~ o0) = goi.

Table 1. Limiting values of the Nusselt number

Boundary condition
Case A B ¢ D
Limiting
Nusselt Nu,, 5852  3-000 0 3-946
number Nu, 3626 1500 1738 0
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F1G. 9. Local Nusselt number at the moving plate vs. &,
boundary condition Case D.

CONCLUSION

Exact analytical solutions of the energy equa-
tion in terms of temperature profiles and Nusselt
numbers have been obtained for the pure
Couette flow and heat transfer between parallel
plates. An inspection of the temperature profile
developments shown graphically reveals the
fact that increasing convection at the vicinity of
the moving plate results in intensified energy
transport thereon. Similarly the heat-transfer
rate, expressed in terms of the dimensionless
Nusselt group, exhibit higher values at the
moving plate. These conclusions are true for all
the cases considered. Solutions obtained in this
paper may serve as a reliable reference to check
techniques developed for the treatment of more
complicated problems associated with Couette
flow of Newtonian as well as non-Newtonian
fluids between parallel plates or narrow-gap
coaxial cylinders.
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Résumé—On donne une solution analytique exact de I'équation de I'énergie pour écoulement de Couette
laminaire en régime permanent d’un fluide visqueux incompressible entre des plaques paraliéles. Les
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propriétés thermiques du fluide sont supposées indépendantes de la température. On considére quatre

cas de conditions aux limites. Celles-ci consistent en des échelons unitaires de température sur I'une des

plaques ou sur les deux ou un échelon unitaire de température sur une plaque, 1’autre plaque étant com-

plétement isolée. Le développement spécial des profils de température est exposé graphiquement. La

variation du nombre de Nusselt local avec la distance longitudinale est présentée ainsi que les valeurs
limites pour la région de la stabilisation thermique compléte.

Zusammenfassung—Fiir die laminare, stationdre Couette-Strémung einer inkompressiblen, viskosen
Fliissigkeit zwischen parallelen Platten wird die exakte analytische Losung der Energiegleichung angegeben.

Die thermophysikalischen Eigenschaften der Fliissigkeit werden als temperaturunabhingig angenom-
men. Es werden 4 Fille von Randbedingungen betrachtet. Diese umfassen schrittweise Temperaturerer-
hohungen an einer oder an geiden Platten, bzw. schrittweise Temperaturerhdhung an einer Platte, wihrend
die andere vollstiandig isoliert ist. Die Temperaturprofile werden auf graphischem Wege ermittelt. Die
Anderung der 6rtlichen Nusselt-Zahl in Lingsrichtung und die Grenzwerte fiir das Gebiet der thermisch voll

ausgebildeten Strdmung werden angegeben.

Ausoranua—IIpNBOINTCA TOYHOE AaHATMTHYECKOE PelleHHe YPABHEHMA SHEPTUM JJIA YCTAHO-
BUBILETOCA JIaMUHApHOTO TeueHHA HysTTa Hec:kuMaeMOlf BASKOM :KUAKOCTH MeM(Iy mapad-
JMeNbHBIMU ILIACTHHAMHI B [ONYLIEHNY He3aBUCUMOCTH TeIlJIOQUBUYECKNX CBONCTB 3HUIKOCTH
OT TemMIeparypH. PaccMaTpUBAIOTCA YeTHpe THNA TPAHMYHKEIX YCJOBMI : OJMHOUYHEHIL TeMITe-
PATYpPHHI UMIyJbC HA OZHON MM 00eMX TNIACTMHAX WIM UMIIYJIhC TEMIEPATyPH HA OXHOH
ILUIACTHHE, B TO BpeMsA KaK BTOpafd IJIACTHHA IOJHOCTHI0 TeIIon30mMpoBana. TemmepaTypurie
npodusi npeacraBieHk rpapuyecku. Ilokasano MaMeHeHNe JOKAJLHEX BEJIHYMH KPUTePHA
HyccenbTa B 3aBHCUMOUTH OT IMPOAOIBLHOTO PACCTOAHNA U NPeielIbHEIX 3HAYeHU I 1A 06acTu
TIOJIHOM TepMUYecKoN cTabMINBATNH.



